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Abstract

This report describes the theory and im-
plementation of simulating fluids using the
Navier Stokes equations. The main equation
that describes the flow of the fluid is split up
into several parts where two are explicitly im-
plemented in this report. The result of the
implementation is presented and discussed.

1 Introduction

Although this report only focuses on the sim-
ulation of water, the Navier-Stokes equations
can be used for several effects such as fire
and wind making the Navier-Stokes equations
very well known.

2 Background

The Navier-Stokes equations describes how
the flow of a fluid changes over time. A vector
field V is used to describe the flow where each
vector in V is the velocity of the flow. Because
of this V can also be referred to as the velocity
field. The equations for incompressible flow
is defined as

δV
δt

= F + v∇2V − (V · ∇)V − ∇p
ρ

(1)

∇ · V = 0 (2)

This equation can be divided into several parts
where F is the external force term, v∇2V is the
viscosity that control the thickness of the fluid,

(V · ∇)V is the self advection term that moves
fluid with itself, p is the pressure field and
ρ is the constant density. In this report the
fluid water is simulated which has a viscosity
close to zero meaning we can ignore this part
without any big losses. The Navier-Stokes
equations without the viscosity term is called
the Euler equations and are not i the same
order as in equation 2:

V0
(V·∇)V−−−−→ V1

F−→ V2

∇p
ρ ,∇·V

−−−−→ V∆t (3)

(V · ∇)V is as mentioned the self advection
and represent non linear phenomenon. Since
V is time dependent the following differential
equation can be used

δV1

δt
= −(V0 · ∇)V0 (4)

This method calculates V1 by backwards trac-
ing in time. This means that it is very depen-
dent on which interpolation that is used.

The external force term can be solved in a
simple way and the only external force in this
report is gravity. The force field F is defined
and creates V2 from V1 by solving:

δV2

δt
= F (5)

This can be done by first order Euler time in-
tegration:

V2 − V1

∆t
= F ⇒ (6)

V2 = V1 + ∆t · F (7)
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The only step remaining is to enforce incom-
pressibility by using ∇p

ρ ,∇ · V. A divergence
free vector field is volume conserving and
therefore incompressible. This is the same as
∇ · V = 0. According to Helmholtz-Hodge
decomposition it is always possible to split a
vector field into a divergence free part Vd f and
a curl free part Vc f as V2 = Vd f + Vc f . Since
V∆t should be divergence free we can refer to
it instead of Vd f and since a gradient field is
curl free ∇q can be referred to instead of Vc f
giving:

V∆t = V2 −∇q (8)

To calculate V∆t, q has to be known. The di-
vergence operator can be applied to all terms
in equation 8 and since V∆t is divergence free
it can be canceled giving by some rewriting:

∇ · V2 = ∇2q (9)

The discrete divergence operator for a point
in the grid using central differencing is:

∇ · Vi,j,k =
ui+1,j,k − ui−1,j,k

2∆x
+

vi,j+1,k − vi,j−1,k

2∆y
+

wi,j,k+1 − wi,j,k−1

2∆z

(10)

where u,v and w are the x,y and components
of every vector in V. The divergence of the
gradient of q can be defined as the Laplacian
applied to q. The discrete Laplacian in vector
notation is:

∇2
qi,j,k =

1
∆x2

[
1 1 1 −6 1 1 1

]


qi+1,j,k
qi−1,j,k
qi,j+1,k

qi,j,k
qi,j−1,k
qi,j,k+1
qi,j,k−1


(11)

Since a uniform grid is used in this report
∆x = ∆y = ∆z. By using the discrete Lapla-
cian and the discrete divergence operator de-
fined in equation 10, equation 9 can be de-
fined as Ax = b. Where A = ∇2, x = q and

Figure 1: Application of the dirichlet boundary con-
dition where the red arrows need to be redirected
since they flow into the solid (grey blocks). From
[1]

b = ∇ · V2. The A matrix is very big since it
contains one row for each voxel that contains
fluid. But A is also very sparse since every
row at most will contain seven elements that
are non-zero. These seven are the voxel itself
and its six neighbours. The neighbours of the
voxel(who is always fluid because of condi-
tions) can be classified as either fluid, solid or
empty. The following classifications are used
in the report


f luid, ϕ f luid ≤ ∆x/2
solid, ϕsolid ≤ 0
empty, otherwise

(12)

Where ϕ f luid and ϕsolid are level set distance
function describing the fluid and solid. Two
boundary condition are important to consider
when solving equation 9. The first condition
is the Dirichlet boundary that states that there
can be no flow, in or out, of the boundary sur-
face to which n is normal. Meaning it forbids
fluid to flow into solid objects. It is defined
mathematically as V · n = 0 and can be visu-
alized as in figure 1.

The second condition is the Neumann
boundary condition:

δV
δn

= 0 (13)

Which forbids any flow along the normal di-
rection of a solid surface and can be visualised
in figure 2.
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Figure 2: Application of the Neumann boundary
condition where the arrows flowing into the solid
(grey blocks) is not allowed. From [1]

3 Tasks

Implementation of the basic functionality for
the fluid solver is explained in this section.

3.1 External forces

The external force in this lab was a previously
stated only the gravity and was implemented
by using equation 7 to add the forces to the
velocity field.

3.2 Dirichlet boundary conditions

The Dirichlet boundary conditions was en-
forced by setting any velocity vector that was
pointing towards a solid object to zero along
the given dimension.

3.3 Projection

The projection step was implemented by using
the conjugate gradient method, which is an
iterative approach. First the divergence of the
velocity field where computed by using equa-
tion 10. Then the A matrix was computed. To
maintain the Neumann boundary condition
the center voxels neighbour where checked to
see if they where classified as solid. If they
where the constant in front of that neighbour-
voxel became 0 and the constant in front of the
center voxel was increased by 1 for each solid
neighbour. If the neighbour was classified
as a solid or empty, fluid is allowed to flow
and this is represented by a constant of 1 in
front of the voxel. Lastly the divergence where
subtracted from the velocity field to preserve

volume by once again using the equation 10
to get the divergence.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Result from task one showing from (a) to
(f) screenshots of the implemented simulation of
water

4 Results

The results of the simulation is shown in fig-
ure 3. It contains a source of error making it
spill outside the box a bit. Otherwise it sim-
ulates according to the theory. In spite of the
projection step the volume is not preserved.
In figure 4 the velocity field can be inspected.
The velocity vectors are pointed downwards
since the fluid is affected by the gravity.

5 Conclusion

The resulting simulation does not do a good
job of simulating water since it spills out-
side the box creating instability. Why this is
the case is unknown but might be connected
with the boundary conditions since neither
the Dirichlet or Neumann boundary condi-
tion preventing the fluid to flow into the solid

Figure 4: The velocity field

is not entirely maintained. These are however
implemented correctly according to the the-
ory and no mistakes could be found during
the lab. As mentioned the volume was not en-
tirely preserved and was mainly caused by nu-
merical diffusion. Overall the Navier-Stokes
equations is apprehensible and a appropriate
way of simulation fluid.

6 Lab partner and grade

The lab was done together with Tim Olsson
and aims for grade 3.
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